- Dr. Gerko Oskam

CINVESTAV-IPN, Unidad Mérida Km 6 Antigua Carretera a Progreso 
Apartado Postal 73 Cordemex 97310. Mérida, Yuc., México 
Tel: +52 (999) 9429429
E-mail: gerko.oskam@cinvestav.mx
Categoría: Investigador Titular CINVESTAV 3-D

Página Personal:http://www.oskamlab.com



ESCOLARIDAD
Doctorado en Ciencias, (Química), febrero 1993
Tésis: “The Electrochemical Properties of Metallized III-V Semiconductors” Vakgroep Gecondenseerde Materie, Debye Instituut, Universiteit Utrecht, HOLANDA

Maestria en Ciencias (Química), enero 1989
Tésis: “The reduction of Br2 at GaAs electrodes” Universiteit Utrecht, Utrecht, HOLANDA

EXPERIENCIA PROFESIONAL
  1. Investigador CINVESTAV 3-D, Departamento de Física Aplicada, CINVESTAV-Mérida, a partir de 2011.
  2. Coordinador Académico, Departamento de Física Aplicada, 2009 – 2015.
  3. Investigador CINVESTAV 3-C, Departamento de Física Aplicada, CINVESTAV-Mérida, a partir de 2009.
  4. Investigador CINVESTAV 3-A, Departamento de Física Aplicada, CINVESTAV-Mérida, 2001 - 2009.
  5. Associate Research Scientist, 1996 - 2001.
    Dept. of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, USA.
  6. Post-doctorate Associate, 1993 - 1996.
    Dept. of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, USA.

DISTINCIONES Y OTRAS ACTIVIDADES

  1. Nivel 3 del Sistema Nacional de Investigadores.
  2. Premio Elsevier-Scopus México 2011.
  3. Associate Editor (2008 - 2012): "Science of Advanced Materials", American Scientific Publishers.
    (Impact Factor: 3.3  -  ISI-Journal Citations Reports, 2011)
  4. Associate Editor (2014 - present): "Journal of the Mexican Chemical Society", Mexican Chemical Society. (Impact Factor: 0.72  -  ISI-Journal Citations Reports, 2015)
  5. Visiting Associate Professor, 2001 – 2008. Dept. of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, USA

RESUMEN DE PRODUCTIVIDAD
Publicaciones con arbitraje:                  92
Capítulos de libros:                              5
Edición de libros:                                 4
Patentes (USA):                                   2
Tesis de doctorado dirigidas:                 11
Tesis de maestría dirigidas:                   12
ISI - Web of Science     Citas totales:     > 4,300
                                   Índice h:           33>

LINEAS DE INVESTIGACION
Solar energy conversion.
Third-generation solar cells: dye-sensitized solar cells; hybrid perovskite solar cells.
Solar water splitting.
Solar-to-thermal energy conversion systems.
Electrochemistry of semiconducting oxides.
Fabrication and characterization of porous and nanostructured materials.
Small-signal modulation methods: impedance spectroscopy; intensity-modulated photocurrent and voltage spectroscopy.


1.   Synthesis of metal oxide nanomaterials
The electrical and optical properties of metal oxide nanomaterials such as TiO2, ZnO, and a range of other oxides (see below) are a strong function of their composition, size, and surface chemistry.  Hence, there is a need for a fundamental understanding of the formation mechanisms of nanoparticles, and the effect of the processing parameters on their properties.  In this project, we investigate the relationship between the structure and the properties of metal oxide nanoparticles fabricated by solution phase methods, including sol-gel and microwave-assisted synthesis methods. In addition, we focus on the deposition of either compact or mesoporous thin films for application in solar energy conversion systems, using screen printing, inkjet printing, spray pyrolysis, and other methods.

2.   Third-generation solar cells
In 1991, O’Regan and Grätzel reported a dye-sensitized TiO2 photoelectrochemical cell with a solar energy conversion efficiency of 7%, sparking a renewed interest in efficient photoelectrochemical cells based on inexpensive oxide materials and a simple fabrication process. Improvements of the cell performance and operating life are essential for the implementation of these new solar cells. Crucial aspects include improvement of the electrical properties of the metal oxide nanoparticulate thin films. The aim of this project is to optimize the TiO2 thin films, and to evaluate the use of metal oxides other than TiO2, mixtures of oxide particles, and core-shell metal oxide nanoparticles for application in photoelectrochemical cells. In addition, we focus on novel dyes (in collaboration with other groups), new redox couples, and small-signal modulation methods to characterize the charge transport and recombination processes.
In 2009, a new system was published, using a hybrid perovskite nanomaterial to sensitize the TiO2 substrate, resulting in an efficiency of about 3%. Since then, however, the field has made tremendous advances, and currently the record efficiency of hybrid perovskite-based solar cells is > 22%. The solar cell has matured into a different type of solar cell altogether, with remarkable properties. We aim to fabricate high-efficiency solar cells, and investigate the dominant recombination mechanisms to gain further fundamental insights, and design improved fabrication methods.

3.   New materials for solar water splitting
The holy grail of photoelectrochemistry has been a system where solar energy can be efficiently converted into the clean fuel hydrogen by solar water splitting, using a semiconductor material to absorb sunlight, creating charge carriers that can both reduce and oxidize water. One of the main problems is that most semiconductors are not stable in water under illumination. In 1972, a paper by Fujishima and Honda showed that using TiO2, solar water splitting can be achieved, however, the efficiency was low, since TiO2 only absorbs about 4% of the solar spectrum. Since then, an active search for new materials has led to improvements, but a breakthrough has not yet been achieved. In this project, we use a combinatorial inkjet printing method to search for novel ternary and quaternary metal oxide semiconductors to split water under solar illumination. Promising materials are characterized using advanced methods, that help to identify ways to further improve the performance of the system.

4.   Selective coatings for solar-to-thermal energy conversion systems
Selective coatings are generally black coatings that absorb the entire solar spectrum, with an absorptance of up to about 95%, but that upon heating up do not emit thermal energy, in order to convert solar energy to usable heat as efficiently as possible. We use two methods to prepare selective coatings: electrodeposition and sputtering. Depending on the desired application, different materials are used, for example, nickel / black nickel or cobalt bilayers for low to medium temperature (60 – 250 ºC) applications, or alumina / molybdenum multilayers or cermets for higher temperature systems. In this project, we perform fundamental studies, developing new coatings, but also aim to fabricate prototype systems for solar collectors: the sample sizes we prepare range from 4 cm2 to about 0.6 m2.



ARTICULOS DE REVISTAS INTERNACIONALES (a partir de 2015)
92. "Surface Photovoltage Spectroscopy Resolves Interfacial Charge Separation Efficiencies in ZnO Dye-Sensitized Solar Cells"
Manuel Rodríguez-Peŕez, Esdras J. Canto-Aguilar, Rodrigo García-Rodríguez, Alexandra T. De Denko, Gerko Oskam, and Frank E. Osterloh. J. Phys. Chem. C, 122, 2582−2588 (2018).

91. "On the use of photothermal techniques for the characterization of solar-selective coatings"
J. A. Ramírez‐Rincón, O. Ares‐Muzio, J. D. Macias, M. A. Estrella‐Gutiérrez, F. I. Lizama‐Tzec, G. Oskam, J. J. Alvarado‐Gil. Appl. Phys. A, 124:252 (2018).

90. "Homogeneous and highly controlled deposition of low viscosity inks and application on fully printable perovskite solar cells"
Simone M. P. Meroni, Youmna Mouhamad, Francesca De Rossi, Adam Pockett, Jennifer Baker, Renán Escalante, Justin Searle, Matthew J. Carnie, Eifion Jewell, Gerko Oskam and Trystan M. Watson. Sci. Technol. Adv. Mater., 19:1, 1-9 (2018).

89. "Charge transfer and recombination kinetics at WO3 for photoelectrochemical water oxidation".
Manuel Rodríguez-Pérez, Ingrid Rodríguez-Gutiérrez, Alberto Vega-Poot, Rodrigo García-Rodríguez, Geonel Rodríguez-Gattorno, Gerko Oskam. Electrochim. Acta, 258, 900-908 (2017).

88. "ZnO-based dye-sensitized solar cells: Effects of redox couple and dye aggregation."
Esdras J. Canto-Aguilar, Manuel Rodríguez-Pérez, Rodrigo García-Rodríguez, Francisco I. Lizama-Tzec, Alexandra T. De Denko, Frank E. Osterloh, Gerko Oskam. Electrochim. Acta, 258, 396-404 (2017).

87. "Improving the mass transport of copper-complex redox mediators in dye-sensitized solar cells by reducing the inter-electrode distance."
Rodrigo García-Rodríguez, Roger Jiang, Esdras J. Canto-Aguilar, Gerko Oskam and Gerrit Boschloo. Phys. Chem. Chem. Phys., 19, 32132-32142 (2017).

86. "High throughput fabrication of mesoporous carbon perovskite solar cells."
Jenny Baker, Katherine Hooper, Simone Meroni, Adam Pockett, James McGettrick, Zhengfei Wei, Renán Escalante, Gerko Oskam, Matthew Carnie and Trystan Watson. J. Mater. Chem. A, 258, 396-404 (2017).

85. "Eco-friendly synthesis of egg-white capped silver nanoparticles for rapid, selective, and sensitive detection of Hg(II)."
Antonio Tirado-Guizar, Geonel Rodríguez-Gattorno, Francisco Paraguay-Delgado, Gerko Oskam, Georgina E. Pina-Luis. MRS Communications, 7, 695-700 (2017).

84. "Inkjet Printing as High-Throughput Technique for the Fabrication of NiCo2O4 Films."
Reyna Dianela Bacelis-Martínez, Gerko Oskam,
Geonel Rodríguez Gattorno, and Miguel Ángel Ruiz-Gómez, Adv. Mater. Sci. Eng., 9647458, 9 pp. (2017).

83. "What difference does a thiophene make? Evaluation of a 4,4'- bis(thiophene) functionalised 2,2'-bipyridyl copper(I) complex in a dye- sensitized solar cell"
Kathryn A. Wills, Humberto J. Mandujano-Ramírez, Gabriel Merino, Gerko Oskam, Matthew D. Jones, Petra J. Cameron and Simon E. Lewis, Dyes and Pigments 134, 419-426 (2016).

82. "Influence of a metallic nickel interlayer on the performance of solar absorber coatings based on black nickel electrodeposited onto copper"
M.A. Estrella-Gutiérrez, F.I. Lizama-Tzec, O. Arés-Muzio and G. Oskam, Electrochim. Acta 213, 460-468 (2016).

81. "Defects in porous networks of WO3 particle aggregates"
A. Márquez, M. J. Rodríguez-Pérez, J. A. Anta, G. Rodríguez-Gattorno, G. Bourret, G. Oskam and T. Berger, ChemElectroChem. 3, 658-667 (2016).

80. "Influence of morphology on the performance of ZnO-based dye-sensitized solar cells"
F.I. Lizama-Tzec, R. García-Rodríguez, G. Rodriguez-Gattorno, E. J. Canto-Aguilar, A.G. Vega-Poot, B. E. Heredia-Cervera, J. Villanueva-Cab, N. Morales Flores, U. Pal, and G. Oskam, RSC Adv. 6, 37424–37433 (2016).

79. "Dye-Sensitized Solar Cell Scale-up: Influence of Substrate Resistance"
R. Escalante, D. Pourjafari, D. Reyes-Coronado, G. Oskam, J. Renew. Sust. Energ. 8, 023704 (2016).

78. "The effect of recombination under short-circuit conditions on the determination of charge transport properties in nanostructured photoelectrodes".
J. Villanueva-Cab, J. A. Anta, and G. Oskam. Phys. Chem. Chem. Phys. 18, 2303-2308 (2016).

77. "A critical evaluation of the influence of the dark exchange current on the performance of dye-sensitized solar cells".
Rodrigo García-Rodríguez, Julio Villanueva-Cab, Juan A. Anta and Gerko Oskam, Materials 9, 33 (16 pp) (2016).

76. "Organic dyes for the sensitization of nanostructured ZnO photoanodes: effect of the anchoring functions".
J. Idígoras, M. Godfroy, D. Joly, A. Todinova, P. Maldivi, G. Oskam, R. Demadrille, J.A. Anta. RSC Adv. 5, 68929-68938 (2015).

75. "Structural, optical and photocatalytic properties of ZnO nanoparticles modified with Cu".
J. R. Torres-Hernández, E. Ramírez-Morales, L. Rojas-Blanco, 
J. Pantoja-Enriquez, G. Oskam, F. Paraguay-Delgado, B. Escobar-Morales, M. Acosta-Alejandro, L. L. Díaz-Flores, G. Pérez-Hernández. Mater. Sci. Semicond. Proc. 37, 87–92 (2015).

74. "Electrodeposition and characterization of nanostructured black nickel selective absorber coatings for solar–thermal energy conversion"
F. I. Lizama-Tzec, J. D. Macías, M. A. Estrella-Gutiérrez, A. C. Cahue-López, O. Arés, R. de Coss, J. J. Alvarado-Gil, G. Oskam. J. Mater. Sci.: Mater. Electron. 26, 5553–5561 (2015).

73. "Synthesis and characterization of WO3 polymorphs: monoclinic, orthorhombic and hexagonal structures".
Cecilia Chacón, Manuel Rodríguez-Pérez, Gerko Oskam, Geonel Rodríguez-Gattorno. J. Mater. Sci.: Mater. Electron. 26, 5526–5531 (2015).

72. "Photothermal determination of infrared emissivity of selective solar absorbing coatings"
J. D. Macias, J. Ordonez-Miranda, F. I. Lizama-Tzec, O. Arés, J. Bante-Guerra, G. Oskam, R. de Coss, J. J. Alvarado-Gil. Int. J. Thermophys. 36, 1051–1056 (2015).

71. "The impact of the electrical nature of the metal oxide on the performance in dye-sensitized solar cells: new look at old paradigms"
Jesuś Idígoras, Gotard Burdzinski, Jerzy Karolczak, Jacek Kubicki, Gerko Oskam, Juan A. Anta and Marcin Ziółek. J. Phys. Chem. C 119, 3931−3944 (2015).


Última ActualizaciÓn: Marzo 2018